Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(11)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423112

RESUMO

Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , HIV-1/genética , HIV-1/metabolismo , Integração Viral
2.
FEBS J ; 289(21): 6731-6751, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35653259

RESUMO

Nucleocytoplasmic shuttling of viral elements, supported by several host factors, is essential for the replication of the human immunodeficiency virus (HIV). HIV-1 uses a nuclear RNA export pathway mediated by viral protein Rev to transport its Rev response element (RRE)-containing partially spliced and unspliced transcripts aided by the host nuclear RNA export protein CRM1. The factor(s) interacting with the CRM1-Rev complex are potential antiretroviral target(s) and could serve as a retroviral model system to study nuclear export machinery adapted by these viruses. We earlier reported that cellular Staufen-2 interacts with Rev, facilitating viral-RNA export. Here, we identified the formation of a complex between Staufen-2, CRM1 and Rev. Molecular docking and simulations mapped the interacting residues in the RNA-binding Domain 4 of Staufen-2 as R336 and R337, which were experimentally verified to be critical for interactions among Staufen-2, CRM1 and Rev by mutational analysis. Staufen-2 mutants defective in interaction with CRM1 or Rev failed to supplement the Rev-RNA export activity and viral production, demonstrating the importance of these interactions. Rev-dependent reporter assays and proviral DNA-construct transfection-based studies in Staufen-2 knockout cells in the presence of leptomycin-B (LMB) revealed a significant reduction in CRM1-mediated Rev-dependent RNA export with decreased virus production as compared to Staufen-2 knockout background or LMB treatment alone, suggesting the relevance of these interactions in augmenting RNA export activity of Rev. Our observations provide further insights into the mechanistic intricacies of unspliced viral-RNA export to the cytoplasm and support the notion that abrogating such interactions can reduce HIV-1 proliferation.


Assuntos
HIV-1 , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Genômica , HIV-1/fisiologia , Carioferinas/genética , Carioferinas/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , RNA Nuclear/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Univers Access Inf Soc ; 21(3): 717-723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33815030

RESUMO

Lack of Sign Language-based learning tools is a hindrance in acquiring knowledge for deaf students. Technology-based tools have introduced innovative ways of learning textbook contents. Augmenting textbook contents with sign can significantly help in learning. This paper proposes SignText, a bilingual tool for learning textbook lessons. This web-based tool works on a web browser to provide sign language-based instructions. Along with signs, simultaneous text-based instructions are also provided to enhance learning. The effectiveness of this tool was studied using an experiment in which 34 deaf students participated. Both quantitative and qualitative studies were conducted to find the effectiveness of SignText. Results show that SignText improves learning for deaf students.

4.
Viruses ; 13(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960728

RESUMO

Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2-HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , HIV-1/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Empacotamento do Genoma Viral , Linhagem Celular , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Virulência
5.
Virology ; 557: 1-14, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581610

RESUMO

The human APOBEC3A (A3A) polynucleotide cytidine deaminase has been shown to have antiviral activity against HTLV-1 but not HIV-1, when expressed in the virus producer cell. In viral target cells, high levels of endogenous A3A activity have been associated with the restriction of HIV-1 during infection. Here we demonstrate that A3A derived from both target cells and producer cells can block the infection of Moloney-MLV (MLV) and related AKV-derived strains of MLV in a deaminase-dependent mode. Furthermore, glycosylated Gag (glycoGag) of MLV inhibits the encapsidation of human A3A, but target cell A3A was not affected by glycoGag and exerted deamination of viral DNA. Importantly, our results clearly indicate that poor glycoGag expression in MLV gag-pol packaging constructs as compared to abundant levels in full-length amphotropic MLV makes these viral vectors sensitive to A3A-mediated restriction. This raises the possibility of acquiring A3A-induced mutations in retroviral gene therapy applications.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Produtos do Gene gag/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , DNA Viral , Produtos do Gene gag/genética , Glicosilação , Células HEK293 , Humanos , Interferon beta/farmacologia , Vírus da Leucemia Murina , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos
6.
Virology ; 554: 17-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333348

RESUMO

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , HIV-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas dos Retroviridae/metabolismo , Spumavirus/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elonguina/genética , Elonguina/metabolismo , Produtos do Gene vif/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Vírus da Imunodeficiência Símia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo
7.
J Mol Biol ; 432(23): 6200-6227, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33068636

RESUMO

APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK â†’ WE modification in Old World anthropoids' A3C, possibly allowing for novel substrate specificity and function.


Assuntos
Citidina Desaminase/genética , Infecções por HIV/genética , HIV-1/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Antivirais/metabolismo , DNA de Cadeia Simples/genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica/genética
8.
Assist Technol ; 32(3): 153-160, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30193075

RESUMO

Availability of a sign language dictionary is very important for the literacy of deaf people. But the intricacies involved in the representation of the sign language impede attempts at representing it in a printed format. A video-based solution helps to solve this problem. This article discusses the development of a bilingual mobile sign language dictionary which has features for converting camera-captured text into sign language and translating simple sentences from a spoken language into their corresponding signs. Feedback from 2,900 users spread across India who have installed our mobile application indicates that users prefer mobile application for learning Indian Sign Language (ISL). Comparing the existing printed sign language dictionaries and other mobile-based ISL dictionaries with the mobile application we have developed, 45 stakeholders of a deaf school assessed that its features like easy availability, speed of operation, and character recognition are very effective in learning ISL.


Assuntos
Multilinguismo , Pessoas com Deficiência Auditiva , Língua de Sinais , Tradução , Adolescente , Adulto , Criança , Feminino , Humanos , Índia , Masculino , Desenvolvimento de Programas/métodos , Adulto Jovem
9.
Front Microbiol ; 10: 2417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736886

RESUMO

Metabolic adaptation of Mycobacterium tuberculosis (M. tuberculosis) to microbicidal intracellular environment of host macrophages is fundamental to its pathogenicity. However, an in-depth understanding of metabolic adjustments through key reaction pathways and networks is limited. To understand how such changes occur, we measured the cellular metabolome of M. tuberculosis subjected to four microbicidal stresses using liquid chromatography-mass spectrometric multiple reactions monitoring (LC-MRM/MS). Overall, 87 metabolites were identified. The metabolites best describing the separation between stresses were identified through multivariate analysis. The coupling of the metabolite measurements with existing genome-scale metabolic model, and using constraint-based simulation led to several new concepts and unreported observations in M. tuberculosis; such as (i) the high levels of released ammonia as an adaptive response to acidic stress was due to increased flux through L-asparaginase rather than urease activity; (ii) nutrient starvation-induced anaplerotic pathway for generation of TCA intermediates from phosphoenolpyruvate using phosphoenolpyruvate kinase; (iii) quenching of protons through GABA shunt pathway or sugar alcohols as possible mechanisms of early adaptation to acidic and oxidative stresses; and (iv) usage of alternate cofactors by the same enzyme as a possible mechanism of rewiring metabolic pathways to overcome stresses. Besides providing new leads and important nodes that can be used for designing intervention strategies, the study advocates the strength of applying flux balance analyses coupled with metabolomics to get a global picture of complex metabolic adjustments.

10.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31138627

RESUMO

Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatisIMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.


Assuntos
Aminas/metabolismo , Mycobacterium smegmatis/metabolismo , Aminas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Metabolômica , Metilação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo
11.
Prog Biophys Mol Biol ; 140: 90-102, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29751012

RESUMO

The distinctive PE and PPE families of proteins in Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacteria, have been associated primarily with antigenicity, immune-modulation and virulence. Earlier, using structure-based sequence annotation, we identified a 225 amino acid conserved PE-PPE domain (Pfam: PF08237) commonly present in some PE and PPE proteins which was observed to comprise α/ß-serine hydrolase fold. The prediction was supported by experimental validations of PE16 that was shown to exhibit esterase activity. In this study, we undertook the characterization of the probable operonic ORFs Rv0151c (pe1) and Rv0152c (pe2). Here we demonstrated that pe1 and pe2 are operonic in organization and are co-transcribed. Both PE1 and PE2 proteins possess esterase activity and hydrolyze short to medium chain p-nitrophenyl esters with more specific activity for p-nitrophenyl caproate (C6) with the optimal catalytic conditions of 37-38 °C and pH 7.0-8.0. The thermal denaturation temperature of PE1 and PE2 proteins were found to be 50 °C. The esterase activity of full length PE1, PE2 and their PE-PPE (α/ß-serine hydrolase) domains are similar indicating that the function of PE-PPE domain is independent of the rest of the protein. The esterase activity of these proteins was validated by mutagenesis of the active site Ser; using PE1 Ser246Ala and PE2 Ser163Ala mutants. With these experiments, we conclusively show that the co-transcribed pe1 and pe2 genes code for enzymes belonging to the esterase family of proteins.


Assuntos
Sequência Conservada , Esterases/química , Esterases/metabolismo , Ésteres/química , Ésteres/metabolismo , Mycobacterium tuberculosis/enzimologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Domínios Proteicos , Sais/farmacologia , Temperatura
12.
Tuberculosis (Edinb) ; 103: 71-82, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28237036

RESUMO

Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Ferro/metabolismo , Mycobacterium tuberculosis/enzimologia , RNA Bacteriano/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Aconitato Hidratase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/química , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Relação Estrutura-Atividade , Tetraciclina/metabolismo , Tetraciclina/farmacologia , Transcrição Gênica/efeitos dos fármacos
13.
PLoS One ; 9(8): e104908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144775

RESUMO

BACKGROUND: Concurrent occurrence of HIV and Tuberculosis (TB) infections influence the cellular environment of the host for synergistic existence. An elementary approach to understand such coalition at the molecular level is to understand the interactions of the host and the viral factors that subsequently effect viral replication. Long terminal repeats (LTR) of HIV genome serve as a template for binding trans-acting viral and cellular factors that regulate its transcriptional activity, thereby, deciding the fate of HIV pathogenesis, making it an ideal system to explore the interplay between HIV and the host. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using biotinylated full length HIV-1 LTR sequence as bait followed by MALDI analyses, we identified and further characterized human-Zinc-finger-protein-134 (hZNF-134) as a novel positive regulator of HIV-1 that promoted LTR-driven transcription and viral production. Over-expression of hZNF-134 promoted LTR driven luciferase activity and viral transcripts, resulting in increased virus production while siRNA mediated knockdown reduced both the viral transcripts and the viral titers, establishing hZNF-134 as a positive effector of HIV-1. HIV, Mycobacteria and HIV-TB co-infections increased hZNF-134 expressions in PBMCs, the impact being highest by mycobacteria. Corroborating these observations, primary TB patients (n = 22) recorded extraordinarily high transcript levels of hZNF-134 as compared to healthy controls (n = 16). CONCLUSIONS/SIGNIFICANCE: With these observations, it was concluded that hZNF-134, which promoted HIV-1 LTR activity acted as a positive regulator of HIV propagation in human host. High titers of hZNF-134 transcripts in TB patients suggest that up-regulation of such positive effectors of HIV-1 upon mycobacterial infection can be yet another mechanism by which mycobacteria assists HIV-1 propagation during HIV-TB co-infections. hZNF-134, an uncharacterized host protein, thus assumes a novel regulatory role during HIV-host interactions. Our study provides new insights into the emerging role of zinc finger proteins in HIV-1 pathogenesis.


Assuntos
Infecções por HIV/fisiopatologia , Repetição Terminal Longa de HIV/genética , Mycobacterium/fisiologia , Tuberculose/fisiopatologia , Células Cultivadas , Células HEK293 , Infecções por HIV/genética , Humanos , Microscopia Confocal , Mycobacterium/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Retrovirology ; 11: 18, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24520823

RESUMO

BACKGROUND: The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. RESULTS: In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. CONCLUSIONS: With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.


Assuntos
Núcleo Celular/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Tecido Nervoso/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Transporte Ativo do Núcleo Celular , Cromatografia de Afinidade , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...